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Abstract A probabilistic causal chain A→B→C may intui-
tively appear to be transitive: If A probabilistically causes B,
and B probabilistically causes C, A probabilistically causes C.
However, probabilistic causal relations can only guaranteed to
be transitive if the so-called Markov condition holds. In two
experiments, we examined how people make probabilistic
judgments about indirect relationships A→C in causal chains
A→B→C that violate theMarkov condition.We hypothesized
that participants would make transitive inferences in accor-
dance with the Markov condition although they were present-
ed with counterevidence showing intransitive data. For in-
stance, participants were successively presented with data
entailing positive dependencies A→B and B→C. At the same
time, the data entailed that A and C were statistically indepen-
dent. The results of two experiments show that transitive reason-
ing via a mediating event B influenced and distorted the induc-
tion of the indirect relation between A and C. Participants’ judg-
ments were affected by an interaction of transitive, causal-
model-based inferences and the observed data. Our findings
support the idea that people tend to chain individual causal

relations into mental causal chains that obey the Markov condi-
tion and thus allow for transitive reasoning, even if the observed
data entail that such inferences are not warranted.
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Categorization

Transitive reasoning enables judgments about unobserved re-
lationships based on indirect evidence. If one observes that
object A is heavier than object B, and that B is heavier than
C, one can infer that A is heavier than C. Not all relations,
however, are transitive. If A is the mother of B, and B is the
mother of C, this does not mean that A is the mother of C.

We investigate whether and to what extent people reason
transitively about causal relations, even when the conditions
for transitive inferences do not hold true. We focus on proba-
bilistic causal chains of the type A→B→C, where individual
relations A→B and B→C can be combined to form a chain
A→B→C to make probabilistic inferences from the chain’s
initial event A to the terminal event C. First, we specify the
conditions under which transitive reasoning in causal chains is
valid. We then report the findings of two experiments investi-
gating whether people make transitive inferences even when
the available data entail that such inferences are not warranted.

Our research builds on the idea that people represent the
world in terms of mental causal models (Sloman, 2005;
Waldmann, 1996; Waldmann, Cheng, Hagmayer, &
Blaisdell, 2008; Waldmann & Hagmayer, 2001) that share
key characteristics with causal Bayes nets, which originated
in philosophy and machine learning (Pearl, 2000; Spirtes,
Glymour, & Scheines, 1993). The key question of the present
research is whether judgments about indirect relations in
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causal chains are influenced by transitive reasoning even
when the data show that the chain is intransitive.

Transitive reasoning in causal chains

When is transitive reasoning in causal chains valid? Consider
a researcher conducting two studies with knockout mice to
investigate the causal relations between a certain gene, the
level of a particular neurotransmitter, and a behavioral pheno-
type. The first study finds that knockout mice tend to have an
elevated neurotransmitter level,

P(elevated transmitter|knockout mice) > P(elevated
transmitter|normal mice)

The second study finds that an elevated transmitter level
raises the probability of showing anxious behavior, that is,

P(anxiety|elevated transmitter) > P(anxiety|no elevated
transmitter)

Given these findings, what can be concluded regarding the
relation between gene and behavior? A transitive inference
may seem intuitively plausible, namely, inferring that knock-
out mice are more likely to show anxiety than normal mice,
that is,

P(anxiety|knockout mice) > P(anxiety|normal mice)

Note, however, that neither study has directly assessed this
indirect relation. Rather, the two direct relations are integrated
into a causal chain that guides the inference about the indirect
relation.

One way to formalize causal chains is to use causal Bayes
net theory (Pearl, 2000; Spirtes et al., 1993). The framework
couples directed acyclic graphs with probability distributions,
with the directed edges representing the causal dependencies
between the domain variables. A central assumption of the
causal Bayes net framework is the causal Markov condition,
which states that a variable conditioned on its direct causes is
independent of all other variables in the causal network, ex-
cept for its causal descendants (Hausman&Woodward, 1999,
2004; Pearl, 2000; Spirtes et al., 1993; Spohn, 2001). It fol-
lows from the Markov condition that the probability distribu-
tion over the variables in the causal graph factors such that

P X ið Þ ¼ ∏
X i∈X

P X i pa X ið Þjð Þ; ð1Þ

where the joint probability of variables, P(Xi) = P(X1, . . . Xn),
is equal to the product of the probabilities of these variables,
conditional on pa(Xi), which denotes the set of direct

causes of variables Xi in the graph (see, e.g., Hausman
& Woodward, 1999, p. 531ff.). Applying the Markov
condition to a causal chain A→B→C entails A and C
being conditionally independent given B, that is,
P(C|B∧A) = P(C|B∧¬A) and P(C|¬B∧A) = P(C|¬B∧¬A).
In other words, the probability of C depends only on the
state of variable B and not on the state of variable A.

Importantly, if the Markov condition holds, the conditional
probability P(C|A) can be calculated from the parameters of
the two direct causal relations with Eq. 2:

P C Ajð Þ ¼ P B Ajð ÞP C Bjð Þ þ P :B Ajð ÞP C :Bjð Þ: ð2Þ

We refer to such inferences about indirectly related events
in causal chains as transitive inferences. Formally, probabilis-
tic transitive inferences in chains are valid if the Markov con-
dition holds (Bonnefon, Da Silva Neves, Dubois, & Prade,
2012). If the Markov condition does not hold, probabilities
inferred through transitive inferences via Eq. 2 may deviate
from the actual relations in the data.

Markov violations and category-based transitive
inference

The Markov condition enables transitive causal inferences. Its
normative and descriptive status, however, is highly disputed.
Some advocates of Bayes nets have defended the Markov con-
dition as being a universal characteristic of causal relations in
the world or of their representations (Hausman & Woodward,
1999, 2004; Spohn, 2001). Others have criticized the condi-
tion’s ontological or epistemological necessity (Arntzenius,
2005; Cartwright, 2001, 2002, 2006, 2007; Sober, 1987,
2001; Sober & Steel, 2012; Steel, 2006). However, even advo-
cates of a universal Markov condition concede that the latter
can be violated psychologically when (i) the event categories
used are inadequate, (ii) there is a mismatch between causal
representations and the true causal structure, or (iii) hidden
external variables are correlated (Hausman & Woodward,
1999, 2004; Spohn, 2001). In short, both advocates and critics
agree that the Markov condition can be violated in practice
when descriptions of the world are incomplete or inadequate.

In this paper, we focus on situations in which the categories
used to classify the instances involved in the causal relations
result in causal chains that violate the Markov condition and
also do not warrant transitive inferences. Consider again the
example of the causal relations between a gene, a neurotrans-
mitter level, and a behavioral phenotype. Assume that six
mice serve as a sample: three knockout mice and three normal
mice (A vs. ¬A). The neurotransmitter level (e.g., elevated vs.
normal, B vs. ¬B) and the anxiety level (e.g., high vs. low, C
vs. ¬C) of each mouse are assessed. Hence, the six mice are
classified according to their genetic makeup, their
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neurotransmitter level, and their anxiety level. A plausible
hypothesis might be that the gene causally influences a mous-
e’s anxiety through regulating the neurotransmitter level.
Figure 1 illustrates these temporally ordered variables and
the parameters estimated from the data. Knockout mice are
more likely to have an elevated neurotransmitter level than
normal mice, P(B|A) = 2/3 > P(B|¬A) = 1/3. Also, mice with
an elevated transmitter level are more likely to be anxious than
mice with a normal transmitter level, P(C|B) = 2/3 > P(C|¬B)
= 1/3. Despite these two positive relations, however, it does
not hold that knockout mice are more likely to be anxious than
normal mice. In fact, knockout mice are less likely to be anx-
ious than normal mice, P(C|A) = 1/3 < P(C|¬A) = 2/3.1

Whereas the data indicate a negative relation between gene
and behavior, a different conclusion results from transitive
reasoning. Inferring the probability P(C|A) from the parame-
ters of the chain’s direct relations via Eq. 2 yields erroneous
estimates of P(C|A) = .56 and P(C|¬A) = .44, indicating that
knockout mice are more likely to show high anxiety levels
than normal mice. This discrepancy results from the causal
chain being intransitive due to a violation of the Markov con-
dition. Inferring P(C|A) via Eq. 2 is normally only valid if A
and C are independent conditional on B, which is not the case,
as P(C|B∧A) = .5, but P(C|B∧¬A) = 1.

In this example the Markov condition is violated at the cate-
gory level due to mixing heterogeneous items (or subclasses)
with varying deterministic relationships (Cartwright, 2001;
Hausman&Woodward, 1999; Spirtes et al., 1993). For instance,
for a mouse (here symbolized by a circle) in the top left corner of
Fig. 1, the relations A→B→C and A→C hold. Conversely, for
the mouse in the bottom left corner, A→¬B→¬C and A→¬C
hold. Thus, on the item level there is no discrepancy between the
direct relations A→B and B→C and the indirect relation A→C.
Causal relations, however, are typically defined at the level of
categories, for example, mice that have gene A versus mice that

do not. On this level, however, the causal chain A→B→C is
intransitive. The key question of our studies is whether people
make transitive inferences on the category level even when the
observed causal chain is intransitive.

Previous research on transitive inferences in causal
chains

Previous research on causal chains has shown that people
make transitive inferences from A to C when observing only
relations A→B and B→C (Ahn & Dennis, 2000; Baetu &
Baker, 2009). Ahn and Dennis (2000) used a sequential learn-
ing paradigm, providing participants with evidence on the
covariation of events A and B (fertilizer→level of chemicals
in soil) intermixed with evidence about events B and C
(chemicals→blooming of flower). They additionally studied
trial-order effects by varying whether positive or negative ev-
idence for local contingencies (between A and B, and between
B and C) was presented first. Participants received no data on
the relation between fertilization (A) and blooming (C) but
were asked to judge this indirect relation. Average causal
judgments were positive, with higher judgments in the
positive-evidence-first condition. A primacy effect when con-
structing the local relations in conjunction with transitive rea-
soning may explain this.

Baetu and Baker (2009) investigated the influence of tran-
sitive reasoning with chains in more detail. In their studies,
positive, negative, and zero contingencies for A→B and B→C
were combined. Participants learned about the contingency
between two lights A and B (while light C was covered), and
between lights B and C (while Awas covered); trials occurred
intermixed. Subsequently, participants first rated the global
A→C relationship and then the local relationships A→B and
B→C. Baetu and Baker used ΔP = P(effect|cause) −
P(effect|¬cause) as a measure of causal strength. If the causal
Markov condition holds, ΔPA→C = ΔPA→B × ΔPB→C (Baetu &
Baker, 2009, Appendix). Although participants never ob-
served the contingency A→C, their judgments were consistent

             A
C

B

B

C

P(B|A)=2/3

P(B A)=1/3

P(C|B)=2/3

P(C B)=1/3

P(C|A)=1/3

P(C A)=2/3

A

A: Genetic makeup C: BehaviorB: Neurotransmitter level

Fig. 1 Causal chain A→B→C (gene → neurotransmitter → behavior)
with positive relations between A and B and between B and C (solid
arrows), but a negative relation between A and C (dashed arrow). Each

symbol denotes an individual mouse (or mouse population), which differ
in the presence versus absence of the three variables

1 Likewise, causal strength measures such asΔP (Allan, 1980; Jenkins &
Ward, 1965; cf. White, 2003) or causal power (Cheng, 1997; Griffiths &
Tenenbaum, 2005; Meder, Mayrhofer, & Waldmann, 2014) indicate that
the individual links are positive, whereas the causal strength for the indi-
rect relation of A and C is negative when marginalizing over B.
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with a multiplication of the individual contingencies, indicat-
ing transitive reasoning.

Goals and scope

The studies of Ahn and Dennis (2000) and Baetu and Baker
(2009) indicate that in the absence of direct evidence on the
relation A→C, people make transitive inferences as if they are
inducing causal chains that obey the Markov condition. In
these studies, no contradictory data were available, so it seems
like a reasonable default assumption for learners.

Our research goes beyond these studies by investigating rea-
soningwith intransitive chains in which theMarkov condition is
violated. Intransitive chains provide a stronger test for the hy-
pothesis that people integrate the links into causal models and
tend to reason causally coherent, deviating from the data, as if
the Markov condition holds (causal coherence hypothesis).
Also, we did not use a sequential learning task (Ahn &
Dennis, 2000; Baetu & Baker, 2009; cf. Hebbelmann & von
Sydow, 2014; von Sydow, Hagmayer, Meder, & Waldmann,
2010) but presented all items in an overview format. This type
of format allows participants to detect that theMarkov condition
does not hold on the category level, because subclasses of items
with different contingencies are mixed. In addition to eliciting
probability judgments on the category level, we obtained judg-
ments about individual items to investigate the relationship be-
tween category-based and data-driven inferences.

Figure 2 illustrates our experimental paradigm. Each black
square represents an individual item defined by the feature di-
mensions Bsize^ and Bgrayscale^ (see Fig. 3). The item space is
partitioned into three categories A/¬A, B/¬B, and C/¬C, with
different boundaries. The data imply a positive contingency
between A and B, P(B|A) = .75 > P(B|¬A) = .25, as well as
between B and C, P(C|B) = .75 > P(C|¬B) = .25. However, A
and C are independent, P(C|A) = P(C|¬A) = .5, as indicated by
the orthogonal category boundaries of A and C. The Markov
condition is violated because P(C|B∧A) = 2/3 but P(C|B∧¬A) =
1. Likewise, P(C|¬B∧A) = 0 but P(C|¬B∧¬A) = 1/3 (see Fig. 2).
This is due to subclasses of A items having different probabil-
ities of co-occurring with eventC. For instance, A items that are
bright and small always lead to C, but A items that are dark and
small never do.

The participants’ task was to judge the conditional
probability of C given A, P(C|A), after being presented
with the data.2 Our key question was whether people
would recognize the independence of A and C based
on the observed data, or whether they would induce a

Markov-coherent causal chain and transitively infer a
positive relation. If they based their inferences solely
on the available data, participants should judge that A
and C are independent, P(C|A) = P(C|¬A) = .5. In con-
trast, if people induce a causal chain A→B→C and as-
sume the Markov condition, they should infer that A
and C are positively related, with P(C|A) = .625 (see
Eq. 2). In Experiment 1, we elicited judgments on the
category and item level. In Experiment 2 we compared
several intransitive and transitive chains and investigated
additional boundary conditions (e.g., judgment order).

Experiments 1a and 1b

In both experiments, participants were sequentially provided
with data regarding the relations A→B and B→C, which also
allowed them to observe A→C. The data entailed a violation
of the Markov condition, rendering A and C statistically inde-
pendent. Participants first judged P(B|A) and P(C|B) for the
individual relations and finally estimated P(C|A). In
Experiment 1a, data were removed before participants judged
P(C|A). In Experiment 1b, the data remained visible. The
question was whether participants would recognize that A
and C were independent (e.g., by realizing that the category
boundaries were orthogonal), or whether they would derive
estimates for P(C|A) from their causal model representation
and reason transitively from A to C, concluding a positive
relation. In a control condition participants were presented
with only data on A→C. Since the mediating event B was
omitted, they were expected to realize the independence of A
and C. We also requested judgments for individual items; the
goal was to investigate to what extent people’s judgments
were sensitive to the varying contingencies on the item level.

Method

Participants and design. One hundred twenty-eight students
from the University of Göttingen participated, in exchange for
candy and participation in a lottery where they could win €50.
There were sixty-four participants in each experiment
(Experiment 1a: 68% female, Mage = 24 years; Experiment
1b: 45% female,Mage = 23 years). Participants were randomly
assigned to either the chain condition (A→B→C) or the con-
trol condition (A→C). In Experiment 1a, one participant who
had previously participated in a related study was replaced.

Materials and procedure Both experiments used the same
materials and counterbalancing conditions. The procedure
was also identical except for varying whether the data were
removed before judging P(C|A) (Experiment 1a) or remained
visible (Experiment 1b). Participants were asked to take the
role of a developmental biologist investigating three

2 Conditional probabilities are simple, uncontroversial measures (Evans
& Over, 2004; Oberauer, Weidenfeld, & Fisher, 2007). Measures of cau-
sality (ΔP, causal power) yield qualitatively similar predictions for the
investigated contingencies.

472 Mem Cogn (2016) 44:469–487



developmental stages of microbes. Specifically, the relations
between the kinds of carotene developed by the microbes in

three consecutive stages (α-carotene, β-carotene, and γ-caro-
tene) were of interest.

Microbes with Alpha-carotene Microbes with no Alpha-carotene 
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Fig. 3 Stimuli (Bmicrobes^) of Experiments 1 and 2 as shown to
participants. Participants were instructed that microbes did not change
their appearance across stages. Microbes were sorted in each stage
according to whether they produced the stage-specific carotene (alpha-,

beta-, or gamma-carotene). Participants’ task was to judge the conditional
probability of one type of microbe later becoming another specific type of
microbe, that is, to judge P(B|A), P(C|B), and P(C|A)
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Fig. 2 Item space and examples for the event structure in the
experimental conditions of Experiments 1a and 1b. Each black square
represents one stimulus item (Bmicrobe^; see Fig. 3), created by
combining different levels of grayscale (1=bright, 8=dark) and size
(1=small, 8=large). Squares with a white dot denote the four individual
test items. The black lines bisecting the item space denote the category
boundaries. Below the squares, contingencies and some resulting

measures are shown. After the conditional probabilities the
corresponding values on the used scale are shown in parentheses.
Δp(AB) denotes Delta P as a measure of causal strength between two
variables, Pdata(C|A) represents the conditional probability of C given A,
as entailed by the data, and Ptrans(C|A) represents the conditional
probability as estimated transitively, based on Pdata(B|A), Pdata(B|¬A),
Pdata(C|B) and Pdata(C|¬B), and Eq. 2
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Stimuli consisted of 40 individual Bmicrobes^ represented as
circles (Fig. 3), varying on the dimensions Bgrayscale^ and
Bsize^ (Fig. 2). A pretest showed that participants could accu-
rately distinguish the individual items. Categories A, B, and C
were created by rotating the category boundary, resulting in or-
thogonal categories A and C. To permit three linearly separable
categories, some feature combinations were eliminated (Fig. 2).

Eight counterbalancing conditions with identical contin-
gencies were created by rotating the three category boundaries
in steps of 45° (Fig. 2). Accordingly, categories A and C had a
one-dimensional boundary in four counterbalancing condi-
tions, whereas category B involved a two-dimensional bound-
ary. In the other four conditions, A and C had a two-
dimensional and B a one-dimensional category boundary. In
all conditions, there was a positive contingency between A and
B, and B and C, respectively, whereas A and C were indepen-
dent: P(C|A) = P(C|¬A) = .5.

Participants were first presented with data regarding the first
and second developmental stages, printed on large panels
(Fig. 3). Data for the first stage arranged the 40 microbes ac-
cording to whether they produced α-carotene (A) or not (¬A).
The samemicrobes in the second stage were arranged according
to whether they generatedβ-carotene (B) or not (¬B). Panels for
the first and second stages were displayed simultaneously.

Participant first judged the conditional probability P(B|A);
that is, they judgedwhethermicrobeswithα-carotene (A) tended
to produceβ-carotene (B) or not (¬B). The experimenter pointed
to the corresponding categories on the panels. We used an 11-
step rating scale of −100 to +100, with amidpoint of 0 indicating
the independence of A and B (Fig. 4). On this scale P(B|A) < .5
corresponds to values below zero, P(B|A) > .5 corresponds to
values above zero, and P(B|A) = .5 corresponds to zero.

After participants judged P(B|A), the C panel was added,
showing the microbes that had produced γ-carotene (C) and
those that had not (¬C; Fig. 3). Using the same rating scale,
participants judged the conditional probability P(C|B), that is,
whether microbes producing β-carotene (B) would or would
not produce γ-carotene.

In Experiment 1a, after participants judged P(C|B), all data
panels were removed and participants had to judge P(C|A) on

the same 11-step rating scale. In Experiment 1b, after partici-
pants judged P(C|B), all data panels remained visible when
participants judged P(C|A), so that the data showing the inde-
pendence of A and C were available during the judgment.

The procedure and materials in the control conditions of
both experiments were identical, except that participants were
shown data only for categories A and C. Accordingly, they
provided an estimate of only P(C|A), with panels for A and
C being visible during judgment.

After participants completed all probability judgments, the
data panels were removed and participants were presented
with four individual microbes (presented in one of two ran-
dom orders). Figure 2 indicates the location of these test items
with a white spot. We selected these items since they were at
least one step away from the category boundary in all
counterbalancing conditions, and in all counterbalancing con-
ditions each item belonged to one of four combinations of
categories (A∧C, ¬A∧C, A∧¬C, and ¬A∧¬C). For instance,
in Fig. 2 the item with size = 1 and grayscale = 3 is of type
A∧C (i.e., the microbe produced α-carotene and γ-carotene).
The goal was to investigate whether judgments were influ-
enced by observed contingencies on the item level and/or
transitive inferences based on the category level.

For each test item, participants judged the probability that it
would generate γ-carotene. To eliminate uncertainty regarding
the category membership of A, information was provided for
each item on whether it had or had not produced α-carotene.
Again, a rating scale of −100 to +100 was used, labeled BThis
[non] alpha microbe tends not to develop gamma-carotene
later^ on the left side and Btends to develop gamma-carotene
later^ on the right side. Different ratings for A and ¬A items
yielding the same effect C would indicate an influence of
category-based transitive reasoning. Different ratings for items
belonging to categories C or ¬C would indicate an influence of
the actually observed contingency on the item level.

Results

For the analyses, the eight counterbalancing conditions were
recoded to match the data structure depicted in Fig. 2. Our

Fig. 4 Example scale used to elicit conditional probability judgments in Experiments 1a and 1b
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predictions for transitive inferences for the global A→C rela-
tion rely on qualitatively correct judgments of the local A→B
and B→C relationships. Therefore, following previous re-
search (Baetu & Baker, 2009), we included only participants
who correctly judged both local relationships to be positive. In
Experiment 1a, 25% of participants failed to meet this criteri-
on in each of the two relations; in Experiment 1b an average of
19% failed in each of the two relations.3

Figure 5 shows participants’ mean probability judgments.
In both studies, judgments for the local relations P(B|A) and
P(C|B) reflect the probabilities in the data. (The objective
probabilities P(B|A) = P(C|B) = .75 correspond to a value of
+50 on the scale used.) The key finding is that in both exper-
iments participants in the chain condition judged P(C|A) to be
greater than zero, Experiment 1a: t(15) = 6.49, p < .001;
Experiment 1b: t(20) = 2.19, p < .05. Thus, although A and
C were independent in the observed data (corresponding to
zero on the scale used), participants judged this relation to be
positive. In contrast, in the control conditions in which the
intermediate event B was omitted, judgments did not differ
from zero, Experiment 1a: t(31) = −1.39, p = .17;
Experiment 1b: t(31) = .21, p = .22. Judgments for P(C|A)

differed between experimental and control condition in both
Experiment 1a, t(46) = 4.52, p < .001, and Experiment 1b,
t(51) = 2.84, p < .05.4

These findings indicate that participants relied on transitive
reasoning to judge the relation between A and C. Despite
being able to detect that these categories of items were inde-
pendent when B was omitted, they inferred a positive relation
when B was the intermediate event. The lower judgments for
P(C|A) in Experiment 1b indicate that making the data avail-
able during judgment increased people’s sensitivity to the in-
dependence of A and C.

We next analyzed participants’ probability judgments re-
gardingC for the individual test items, which consisted of four
items combining membership of categories A and C (i.e.,
items of type A and C, A and ¬C, ¬A and C, and ¬A and ¬C;
see Fig. 2). Theoretically, if judgments are based solely on
transitive reasoning on the category level, there should be
identical positive judgments for A items around +25, regard-
less of whether an item belonged to categoryC or ¬C. The two
¬A items (¬A and C and ¬A and ¬C) should receive negative
ratings of around −25. Conversely, if participants’ judgments
are driven solely by the observed data, C items should receive
a rating of +100, and ¬C items one of –100, independent of
whether they are type A or ¬A. Note that the maximal
Bbottom-up^ effect (C vs. ¬C items) is larger than the maximal
Btop-down^ effect (A vs. ¬A items).

3 The predictions for people who failed to meet the selection criteria are
not clear, since they may have failed for various reasons, such as a lack of
concentration or because they recognized the intransitivity. To explore
whether participants used the local relations as predictors, we correlated
the empirically found estimates of P(C|A) with the product P(C|B) ×
P(B|A) and with P(C|B) × P(B|A) + (1-P(C|B)) × (1-P(B|A)). The latter
estimate relies on a symmetry assumption in line with the observed data:
P(C|B) =P(¬C|¬B). In Experiment 1a, both correlations were positive and
large when we included all participants (r = .53 and r = .55) or only those
meeting the selection criterion (r = .63 and r = .63). In Experiment 1b, in
contrast, we obtained no correlation when considering all participants (r
= .12 and r = .08) but strong positive correlations for participants meeting
the criterion (r = .55 and r = .53). This suggests that people in the group
meeting the selection criterion were often guided by transitivity, but that
at least in Experiment 1b many of the participants failing to meet the
criterion cannot be modeled by transitivity.

Fig. 5 Mean judgments (±SE) on the category level in Experiments 1a
and 1b. Judgments were given on an 11-step scale of −100 to +100.
P(C|A) was judged with data being removed in Experiment 1a and data
being present in Experiment 1b. For the local relations, P(B|A) = P(C|B) =
.75 holds in the data, corresponding to +50 on the scale used. The

observed data entails P(C|A) = P(C |¬A) = .5, corresponding to a value
of 0 on the scale used. Deriving P(C|A) from a causal chain via Eq. 2
yields .625, corresponding to a value of +25 on the scale used. Judgments
of P(B|A) and P(C|B) were not collected in the control condition

4 Additionally, we controlled for the two patterns of one-dimensional
(1D) and two-dimensional (2D) category boundaries used in the eight
control conditions (1D–2D–1D vs. 2D–1D–2D categorization type).
Descriptively, the distortion effect was larger in the 2D–1D–2D condi-
tion. However, a two-way ANOVA concerning the P(C|A) judgments
showed a significant main effect only of experimental condition vs. con-
trol, Experiment 1a, F(1, 44) = 19.50, p < .001; Experiment 1b, F(1, 49) =
5.15, p < .05. There was no effect of categorization type, Experiment 1a,
F(1, 44) = 1.7, p = .20; Experiment 1b, F(1, 49) < 1, p = .99, and no
interaction, Experiment 1a, F(1, 44) < 1, p = .94; Experiment 1b, F(1, 49)
= 1.43, p = .24.
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Figure 6 shows participants’ mean judgments for the
four test items regarding the probability of C. For these
judgments the learning data had been removed in both
studies. Judgments in the control condition serve as base-
line, showing the influence of the data on participants’
judgments without intermediate event B. In the control
condition, in both studies judgments varied only as a func-
tion of whether an item did or did not belong to category C,
irrespective of whether the item belonged to category A or
¬A. Consequently, in both experiments an analysis of var-
iance (ANOVA) for the control condition, with item types
A versus ¬A and C versus ¬C as within-subject factors,
yielded a significant effect only for items of type C versus
¬C, Experiment 1a, F(1, 31) = 17.90, p < .001, ηp

2 = .37;
Experiment 1b, F(1, 31) = 6.33, p < .05, ηp

2=.17; there was
no influence of type A versus ¬A, F(1, 31) < 1, and no
interaction, Experiment 1a, F(1, 31) < 1; Experiment 1b,
F(1, 31) = 1.27, p = .27.

A different pattern of judgments was obtained in the chain
conditions. For instance, the two items belonging to category
C were judged differently depending on the status of A, with
higher judgments for A than for ¬A items. Analogously, items
that belonged to category ¬C received higher judgments when
belonging to A than when belonging to ¬A. The pattern also
reflects an influence of the data, as the judgments for the two A
items and the two ¬A items varied as a function of true mem-
bership regarding C. Accordingly, in Experiment 1a, a main
effect of typeC versus ¬C, F(1, 15) = 11.67, p <. 01, ηp

2 = .43,
a main effect of type Aversus ¬A, F(1, 15) = 6.04, p < .05, ηp

2

= .28, and an interaction, F(1, 15) = 9.72, p < .05, ηp
2 = .39,

resulted. Thus, in the chain condition participants’ judgments
were influenced by both the category level relations and ob-
servations on the item level.

In Experiment 1b, the pattern was qualitatively simi-
lar, although less pronounced. The ANOVA for the

chain condition yielded a significant effect of items of
type C versus type ¬C, F(1, 20) = 14.69, p < .01,
ηp

2 = .46, as well as—at least for a one-tailed test of
our prediction—an influence of type A versus ¬A,
F(1, 20) = 3.80, pone-tailed < .05, ηp

2 = .16, but no
interaction, F(1, 20) < 1. The two main effects indicate
that judgments on the item level were still influenced by
the inferred positive relation between A and C on the
category level and the observed data concerning catego-
ry C versus ¬C. As in Experiment 1a, the effect of the
category membership of C was larger than that of cate-
gory A, consistent with the theoretically maximal effect
of these factors.

Table 1 shows the distribution of judgments, that is,
the proportion of participants judging P(C|A) to be pos-
itive, zero, or negative. Although a larger proportion of
participants in the experimental conditions detected the
zero contingency in Experiment 1b than in Experiment
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Fig. 6 Mean judgments (±SE) of P(C|item) in Experiments 1a and 1b.
Each item corresponds to a combination of categories A/¬A and C/¬C
(see Fig. 2 for locations in the item space). For each item, information on

A vs. ¬A was given and the task was to infer the probability of C.
Judgments were given on an 11-step scale of −100 to +100

Table 1 Percentage (and frequency) of participants in Experiments 1a
and 1b judging the relation between A and C to be negative, zero, or
positive on a scale of −100 to +100

Experiment Condition Negative Zero Positive

1a Intransitive chain 0% (0) 6% (1) 94% (15)

Control 28% (9) 56% (18) 16% (5)

1b Intransitive chain 19% (4) 33% (7) 48% (10)

Control 28% (9) 56% (18) 16% (5)

Note. Boldface entries correspond to the prediction of transitive distortion
effects in chain conditions and zero judgments in the control condition.
Participants’ judgments were classified as positive for the interval 0 < x ≤
100, negative for −100 ≤ x < 0, and zero if and only if they answered
Bzero.^
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1a (exact Fisher test, p < .05), both experiments show a
larger proportion of positive answers in these conditions
than in the respective control conditions (Experiment 1a:
p < .001; Experiment 1b: p < .05).

Discussion

The studies show that participants whomade correct judgments
regarding the two local relations A→B and B→C judged
P(C|A) to be larger than zero, indicating a transitive inference
from the chain’s initial event A to the final event C. These
judgments strongly differed from those in the control conditions
without intermediate variable B, in which judgments around
zero were obtained. The size of the effect was modulated by
the specific testing conditions, with a stronger influence of the
category-based transitive inference when the data were not vis-
ible during the judgment. Probability judgments for individual
test items were influenced by transitive inferences on the cate-
gory level and item-specific knowledge. The results support the
idea that participants induced a causal chain A→B→C and
reasoned transitively from A to C, although the Markov condi-
tion was violated and transitivity did not hold in the data.

Experiment 2

The goal of Experiment 2 was to investigate reasoning with
intransitive chains in a wider array of circumstances. In addition
to the intransitive chain of Experiment 1 (A→B, B→C, A inde-
pendent of C, henceforth denoted ++0) we included a new in-
transitive chain involving two preventive causal relations (A→
¬B, ¬B→C, A independent ofC, denoted −−0). The goal was to
rule out that positive judgments for the local relations created a
response bias toward a positive rating for the A→C relation.
Additionally, we used a new control condition that matched the
complexity of the intransitive chains. This involved a positive
A→B contingency, followed by independent B and C variables,
and likewise independent variables A and C (denoted +00).

We also included two transitive chains that obeyed the
Markov assumption (A→B, B→C, A→C, denoted +++; and
A→¬B, ¬B→C, A→C, denoted −−+) as a comparison for the
respective intransitive chains (++0 and −−0). This allowed us to
investigate whether participants would use the observable
evidence in addition to transitive reasoning to judge the indirect
relation between A and C. Finally, we included a Markov-
coherent chain with a negative overall relation (−+−) to examine
whether people correctly learn a negative overall relationship.

Based on the findings of Experiment 1 we expected distortion
effects due to transitive inferences in conditions ++0 and −−0.
However, we expected to find higher ratings in the respective
transitive conditions +++ and −−+, due to an additional influ-
ence of the observable positive relation between A and C. In the
control condition +00, both transitive inferences and the learning

data entailed a zero contingency. Therefore we expected partic-
ipants to correctly detect A’s and C’s independence.

Finally we controlled for question order. In the local–global
conditions, similar to Experiment 1, participants rated the individ-
ual causal links before judging the conditional probability of C
given A. In the global–local conditions, this order was reversed.

Method

Participants One hundred twenty-four participants (56% fe-
male;Mage = 23 years), mostly students from the University of
Heidelberg, took part in exchange for chocolate and participa-
tion in a lottery where they could win €50. Three participants
were excluded from the analyses (two clear outliers in the time
used and one who gave a rating of −100 in all local judgments).

Design The experiment had a 2 (Judgment Order: local–global
vs. global–local, between-subjects) × 6 (Contingency Condition,
within-subject) mixed factorial design. The six within-subject
conditions, which involved different A→B, B→C, and A→C
contingencies, were presented in random order. Figure 7 shows
the item space and resulting contingencies for the six contingen-
cy conditions. Conditions ++0 and −−0 were intransitive and
Markov-incoherent. The +++, −−+, and −+− conditions were
transitive and Markov-coherent. The neutral control condition +
00 entailed a zero A→C contingency, both in the data and when
using Eq. 2. For each condition (see Fig. 7), participants were
randomly assigned to one of eight counterbalancing conditions
created by rotating the category boundaries, resulting in 48 data
sets, each with three data panels presenting 40 microbes.5

Materials and procedure We used the same scenario and
materials as in Experiment 1 (see Fig. 3), but in a computer-
based experiment. As in Experiment 1b, judgments about
P(C|A) were elicited in the presence of the learning data.
Since participants were presented with several contingency
conditions, we omitted the single-item test.

First, participants were told about the microbes, their three
developmental phases, the three types of carotenes (α-carotene,
β-carotene, γ-carotene), and the question order. To elicit prob-
ability judgments, we again used an 11-step scale but with
different labels and no numbers (see Fig. 8). For reasons of
comparability we report results using a scale of −100 to +100.

Participants were randomly assigned to a question order. In
the local–global condition, participants were first shown the
A/¬A panel and the B/¬B panel and asked to judge P(B|A).
Subsequently, the C/¬C panel was added and participants
judged P(C|B). Finally, they estimated P(C|A), with the

5 With 40 microbes, some conditions only approximate the Markov con-
dition. We did not increase the number of items in order to retain compa-
rability with Experiment 1 and to ensure that the task did not become
more difficult.
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previous judgments and data remaining visible. In the global–
local condition, all three panels were presented from the outset

and participants first estimated P(C|A). Subsequently, we
asked for judgments for P(B|A) and P(C|A). Finally, we
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Fig. 7 Item space in the six contingency conditions of Experiment 2. Black squares represent stimulus items (Bmicrobes^) in each of the three
developmental stages showing a corresponding carotene (A, B, C); lighter squares refer to items without the corresponding carotenes (¬A, ¬B, ¬C)



included an item-sensitivity test to make sure that participants
were able to distinguish between neighboring feature values
of size or brightness (see Appendix 1).

Results

All answers were recoded to match the counterbalancing condi-
tions shown in Fig. 7. We used the same selection criterion as
before; that is, participants had to judge the two local links qual-
itatively correctly (cf. Baetu & Baker, 2009), because this is a
prerequisite for testing the impact of transitive reasoning in in-
transitive chains. Judgments for positive local relations had to be
in the interval +20 ≤ x ≤ +100 (i.e., one of the five farthest points
to the right on the 11-point rating scale); for a negative relation in
the interval −100 ≤ x ≤ −20 (i.e., one of the five farthest points to
the left); and for the relation with a predicted zero mean in the
interval −40 ≤ x ≤ +40 (i.e., one of the five points mid-scale).
These intervals are centered on the predicted values for the re-
spective relations: positive = 50, negative = −50, and null = 0.6

Selections were made for each condition separately.
Figure 9 shows the mean estimates for judgments of P(C|A).

Judgments ofP(B|A) andP(C|B) were close to the true values (for
details, see Appendix 2, Table 5). Importantly, the intransitive
chains ++0 and −−0 yielded positive judgments, despite A and
C being independent.7 In the Markov-coherent +00 condition,
answers were close to zero, the transitive chains +++ and −−+
yielded strong positive judgments, and the transitive chain −+−
yielded negative judgments. Question order (local–global vs.
global–local) did not influence judgments.

We first analyzed whether ratings of P(C|A) differed from
zero (Table 2). Unsurprisingly, ratings differed from zero in
the three conditions in which there was a relation between A
and C (+++, −−+, and −+−). However, consistent with tran-

sitive reasoning, estimates also differed from zero in the
Markov-incoherent conditions (++0 and −−0), although A
and C were independent. They did not differ from zero in
the control condition (+00).

Second, we compared estimates of P(C|A) across the differ-
ent conditions, controlling for question order.8 Table 3 shows
the results of respective 2 × 2 ANOVAs. For no comparison
were Question order or the Order × Contingency interaction
significant. The comparisons of the generative intransitive
chain ++0 and the preventive intransitive chain −−0 with the
neutral control condition +00 (see Table 3, upper two rows)
indicate illicit transitive inferences. In both intransitive chain
conditions, judgments were higher than in the control condi-
tion (differences of 18.7 and 13.8, respectively), although the
difference between the preventive chain and the control condi-
tion was only marginally significant (p = .06, one-sided test).9

To investigate to what extent participants were sensitive to the
observed data, ratings in the intransitive conditions (++0 and −
−0) were compared to the corresponding transitive conditions
(+++ and −−+; see Table 3, two middle rows). Judgments were
higher in the latter caseswhenP(C|A) > .5 thanwhenP(C|A) = .5.
These results show that judgments in the intransitive conditions
were influenced not only by transitive reasoning on the category
level, but also by the observed contingencies.

Additionally, we examined potential response biases by
comparing the ++0 condition with the −−0 condition, and
the +++ condition with the −−+ condition (see Table 3,
bottom two lines). If observing two positive relationships for
the direct links or giving two positive judgments creates a
tendency to judge the indirect relation positively, too, judg-
ments of P(C|A) should differ between conditions. The anal-
yses show that this was not the case: There was no response
bias and no effect of question order (see also Fig. 9).

Furthermore, Table 4 presents an analysis on the individual
level for the target inference P(C|A). Each participant was
classified according to judging a particular relation qualita-
tively as positive, negative, or zero. In both the generative
intransitive condition (++0) and the preventive intransitive
chain condition (−−0) the overall proportion of positive an-
swers was higher than in the neutral control condition (+00;
four field χ2 tests, p < .001, p < .05).10 There was an even
higher proportion of positive P(C|A) judgments in the corre-
sponding transitive conditions +++ and −−+ (χ2 tests, p < .05,
p < .001). The proportion of negative answers in the mixed

6 Across all conditions, an average of 29% of answers concerning local
relations fell into the six excluded levels of the scale (out of 11 levels).
7 We also tested if the difference between the categorization types mod-
ulated the size of the distortion effect. There was no significant difference
in the two relevant intransitive conditions, ++0: F(1 ,71) = 2.55, p = .11
and −−0: F(1, 64) = 3.35, p = .07, but descriptively the distortion effect
was larger in the 2 dimension-1 dimension-2 dimension (2D–1D–2D)
condition.

8 We did not conduct a global ANOVA on question order because apply-
ing the selection criterion of qualitatively correct local judgments to all
conditions simultaneously would have excluded too many participants.
9 Note that this test has a lower statistical power than the test against zero,
because applying the selection criterion to both conditions lowered the
number of participants involved.
10 However, for the preventive intransitive chain condition this difference
seems to have been drivenmainly by the local–global conditionwhere the
difference between positive and negative answers became significant (ex-
act binomial test, p < .05).

Fig. 8 Example of scale used for eliciting conditional probability
judgments in Experiment 2. Judgments were given on an 11-step scale
without values; for reasons of comparability with Experiment 1, we report
our results using a scale of −100 (mostly no beta-carotene) and +100
(mostly beta-carotene). Note that the scale in Experiment 1 had −100
on the left and +100 on the right. Here, the equivalent of −100 (mostly
no beta-carotene) is on the right and the equivalent of +100 (mostly beta-
carotene) is on the left
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transitive condition (−+−) was of a similar size to the propor-
tion in the positive transitive conditions and higher than that in
the control condition +00 (χ2 test, p < .001).

Finally, the item-sensitivity test corroborated a reasonable
ability of participants to distinguish between neighboring fea-
ture values of the items shown (microbes) and that differences
in ability seem not to have driven the distortion effect (see
Appendix 1).

Discussion

In Experiment 2 we replicated and extended the results of
Experiment 1, while controlling for alternative explanations. In
both intransitive chain conditions (++0 and −−0) participants’
judgments deviated from the observed data, consistent with the
idea that people tend to induce Markov-coherent causal chains
and use them to reason transitively from A to C. The fact that
participants gave higher ratings when reasoning with transitive
chains suggests that judgments were also influenced by the learn-
ing data. In the transitive condition the ratings even seem a bit too

high, but this may relate to the numberless rating scale in this
experiment (see also Rehder & Burnett, 2005).

Our analyses also show that the distortion effect in the
intransitive conditions cannot be explained by answer tenden-
cies being due to influences from previous judgments or by
previous beliefs about the global relation of A and C. First, the
+00 control condition yielded judgments close to zero; sec-
ond, the intransitive −−0 and ++0 conditions yielded similar
judgments. Third, judgments in the positive (+++, −−+) and
negative (−+−) transitive conditions had similar absolute pos-
itive or negative values, and fourth, the order in which judg-
ments were elicited was irrelevant.

General discussion

Our goal was to investigate whether transitive inferences in
probabilistic causal chains of the type A→B→C distort the
induction of the relationship between A and C when the tran-
sitive inference based on the independent combination of the
observed local relationships A→B and B→C, for instance,
entails a positive indirect relationship, while the data directly
shows that that A and C are independent. We studied the in-
fluence of transitive inference in intransitive chains that vio-
lated the Markov condition on the category level because het-
erogeneous subclasses of items were mixed. Our results show
that people made judgments about P(C|A) that systematically
deviated from the observed data but were consistent with a
transitive inference from A to C based on a mental causal
model (illicitly) obeying the Markov assumption.

Experiment 1a demonstrated the influence of inappropriate
transitive reasoning when participants learned consecutively
about the two individual links and made judgments after the
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Fig. 9 Mean judgments of P(C|A) (±SE) on the category level in
Experiment 2. Judgments were given on an 11-step scale of −100 to +
100. Local–global: Participants first judged the local relations P(B|A) and
P(C|B) before judging P(C|A). Global–local: Participants first judged

P(C|A) and subsequently the local relations P(B|A) and P(C|B). All: Mean
judgments aggregated across question order. See text for descriptions of
chain conditions

Table 2 t Tests (one-tailed) for judgments of P(C|A) against zero in
Experiment 2

Condition P(C|A)
M (SE)

df t p

++0 16.71 (5.30) 72 3.15 .002

−−0 11.81 (5.43) 65 2.16 .033

+00 −1.97 (4.62) 60 −0.43 .672

+++ 35.29 (4.27) 84 8.27 .001

−−+ 31.85 (5.48) 83 5.81 .001

−+− −32.81 (4.85) 63 −6.77 .001
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learning data were removed. Experiment 1b showed that this
finding was also obtained when all data were available while
judging P(C|A), although in this case the judgments were influ-
encedmore strongly by the learning data.When the intermediate
event Bwas omitted from the data, participants had no difficulty
recognizing that A and C were unrelated. Further analyses
showed that judgments on the level of individual items were
influenced by transitive inferences on the category level and
the item-level relations.

Experiment 2 investigated the robustness of these findings
while controlling for alternative explanations, such as task
complexity and possible answer tendencies. Similar findings
to Experiments 1a and 1b were obtained. A direct comparison
of intransitive versus transitive chains showed that partici-
pants’ judgments on the category level were influenced not
only by illicit transitive reasoning but also by the observed
data. Results in the different control conditions refute the idea
that these distortion effects are due to answer tendencies
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Table 4 Percentage (and frequency) of participants in Experiment 2 judging the relationship between A and C to be negative, zero, or positive, on a
scale of −100 to +100

Contingency condition Order Negative Zero Positive

Generative intransitive chain (++0) Local–global 30% (11) 6% (2) 64% (23)

Global–local 19% (7) 22% (8) 59% (22)

All 25% (18) 14% (10) 62% (45)

Preventive intransitive chain (−−0) Local–global 24% (9) 24% (9) 53% (20)

Global–local 36% (10) 21% (6) 42% (12)

All 29% (19) 23% (14) 48% (32)

Neutral control (+00) Local–global 25% (8) 41% (13) 34% (11)

Global–local 44% (13) 28% (8) 28% (8)

All 34% (21) 34% (21) 31% (19)

Generative transitive chain (+++) Local–global 14% (6) 7% (3) 79% (35)

Global–local 10% (4) 10% (4) 80% (33)

All 12% (10) 8% (7) 80% (68)

Preventive transitive chain (−−+) Local–global 11% (3) 7% (2) 81% (22)

Global–local 22% (6) 0% (0) 78% (21)

All 17% (9) 4% (2) 80% (43)

Mixed transitive chain (−+−) Local–global 71% (25) 11% (4) 17% (6)

Global–local 86% (25) 10% (3) 3% (1)

All 78% (50) 11% (7) 11% (7)

Note. Boldface entries indicate the main prediction for conditions assuming that participants engage in transitive reasoning without modeling subjective
distributions over values. Participants’ judgments were deemed positive for the interval 0 < x ≤ 100, negative for −100 ≤ x < 0, and zero if and only if they
answered Bzero.^ All: Percentage and frequency of judgments aggregated across question order.

Table 3 Analyses of variance (2 × 2) comparing judgments of P(C|A) in the within-subject contingency conditions while controlling for between-
subjects question order

Comparisons Contingency Question order Contingency × Order N

F ηp
2 p F ηp

2 p F ηp
2 p

++0 +00 6.16 .12 .017 0.12 .00 .725 0.19 .00 .668 44

−−0 +00 2.57 .05 .116 2.42 .06 .127 0.06 .00 .805 42

++0 +++ 9.61 .13 .003 0.04 .00 .848 0.18 .01 .674 63

−−0 −−+ 7.66 .16 .008 0.14 .00 .641 0.10 .00 .748 42

++0 −−0 0.05 .00 .828 0.40 .00 .529 0.05 .00 .768 45

+++ −−+ 0.46 .01 .500 0.22 .00 .995 1.99 .04 .165 47

Note. See Fig. 9 for mean judgments in the different conditions.



resulting from previous judgments (cf. atmosphere effects in
syllogistic reasoning; Seels, 1936) or to prior beliefs
concerning the global relation. Judgments of the indirect rela-
tion were correct and independent of question order in
Markov-coherent, transitive conditions: positive for genera-
tive as well as preventive relations, negative for mixed rela-
tions, and zero in the neutral control condition.

The present research goes beyond previous studies (Ahn &
Dennis, 2000; Baetu & Baker, 2009) that investigated the
influence of transitive reasoning in the absence of data about
A and C, so that learners could not assess whether the Markov
condition held true. While these studies demonstrated that
people made transitive inferences in the absence of data on
the relation between A and C, our results suggest they do so
even in the presence of counterevidence. Although partici-
pants could observe the indirect relation between A and C,
judgments were substantially influenced by transitive
reasoning.

Should one assume transitivity and the Markov condition
when inducing causal structures?

Cartwright (2001, 2002, 2007) criticized the concept of assum-
ing the Markov condition as a universal property of causal
relations in the world. Even proponents of a universal assump-
tion of the Markov condition concede that the condition need
not hold for inadequate category schemes or incomplete causal
structures actually in use (Hausman &Woodward, 1999, 2004;
Spohn, 2001). Inspired by these ideas, we investigated the in-
fluence of transitive reasoning in intransitive chains that violate
the Markov condition.

In our scenarios the Markov condition is violated due to
mixing subclasses of items with different contingencies.
Aggregating these subclasses into the same category results
in a violation of the Markov condition and of transitivity,
given the provided categories. However, categories play an
indispensable role in causal induction and causal reasoning,
as causal relations are typically defined on the category level
(Lien & Cheng, 2000; Waldmann & Hagmayer, 2006;
Waldmann, Meder, von Sydow, & Hagmayer, 2010; also
Hagmayer, Meder, von Sydow, & Waldmann, 2011). Even if
one assumes that causal relationships at a more fine-grained
level adhere to the Markov condition, there is no guarantee
that this is the case for a given category scheme. One rarely
knows whether categories are homogeneous, and causal rela-
tionships may often involve mixtures of different causal rela-
tionships at some lower level or involve hidden variables.
Thus it seems plausible for transitive distortion effects to play
a substantial role in everyday as well as scientific reasoning.

Do our findings show that people’s probabilistic in-
ferences are generally flawed and error prone? The

results do show that transitive reasoning that assumes
an independent integration of causal links can systemat-
ically deviate from objective data. Yet every cognitive
system needs to make inductive inferences about unob-
served relations, and the virtue of the Markov condition
is that it enables such inferences (Pearl, 2000; Spirtes
et al., 1993). Moreover, the independence assumptions
formalized in the Markov condition facilitate a parsimo-
nious representation of relationships between variables
(Domingos & Pazzani, 1997). Thus the Markov condition
may provide a reasonable default assumption that guides hu-
man learning at least initially, even if the assumption does not
hold (von Sydow et al., 2010; Jarecki, Meder, & Nelson, 2013).
Although the Markov condition does not need to hold for the
categories we used, it may provide reasonable guidelines for an
ideal construction of causal relationships and categories
(Hausman & Woodward, 1999, 2004; but cf. Cartwright,
2007). We focused here on chains where we find this idea
convincing. Even if transitive distortion effects show that the
independent integration of single links may lead learners astray,
this is taken as support for the idea that people tend to assume
that causal chains are transitive. Apart from resolving such
situations by differentiating categories into different sub-
classes—for which we here found only weak evidence—–a
further way to prevent intransitive chains is that people may
already induce categories in a way that allows for transitive
reasoning (Hagmayer et al. 2011).

Transitive reasoning in causal chains: boundary
conditions and future directions

Our findings suggest several avenues for future research. A
key question concerns the boundary conditions for illicit tran-
sitive reasoning.

One way to eliminate transitive distortion effects for a chain
with two nonzero local relations and a zero global contingency
may be to highlight a possible direct relation between A and C.
Although the temporal order of events in our experiments
constrained the set of plausible causal models (Lagnado &
Sloman, 2006), such constraints do not exclude a chain with
an additional direct link between A and C, rather than assuming
that these variables were only indirectly connected via
intermediating event B. Our results suggest that people tend to
induce a parsimonious chain model without an additional link.
Future research should investigate whether better calibrated
judgments are obtained if one would explicitly point out alter-
native causal structures.

The obtained distortion effects might have been caused by
a focus on causal relations, and might have been attenuated by
a focus on the involved categories. In fact, research on causal-
based category induction (Lien & Cheng, 2000; Waldmann &
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Hagmayer, 2006; Waldmann et al., 2010) suggests that
people can use causal information to induce categories.
The results of Hagmayer et al. (2011) suggest that peo-
ple tend to continue to use categories from earlier nodes
in a chain. They investigated the transfer of category
schemes when learning causal chains A→B→C, where
the dichotomous events A and C were precategorized
but the intermediate event B consisted of uncategorized
exemplars. They showed that the categorization of B
based on A was subsequently used for the second causal
relation, even if not optimal. In our task all three events
were precategorized, and no transfer of categories oc-
curred—otherwise participants would have realized that
A and C were orthogonal. Nonetheless, tasks that focus
more strongly on categories than on relationships be-
tween categories might reduce transitive distortion
effects.

Similarly, an emphasis on different subclasses of items with
different contingencies (mixing) might reduce transitive distor-
tion effects. Although we used only a two-dimensional item
space and—for the intransitive chains—deterministic relation-
ships on the subclass level, a stronger emphasis on the existence
of subclasses, communication of several different causes for
categories (Bonnefon et al., 2012), or an even simpler item
space (see Fig. 1) might reduce distortion effects.

The semantics and pragmatics of scenarios and judgments
appear to provide an additional important dimension relevant
to issues of causal intransitivity. For example, being hungry
(A) causes one to eat (B), which in turn causes one to feel full
(C). Here, a transitive inference would suggest, counterintui-
tively, that being hungry first causes one to feel full. In fact,
research on verbally communicated causal relations suggests
that people do regard some causal chains as intransitive
(Bonnefon et al., 2012; Mayrhofer, Hildenbrand, &
Waldmann, 2013). Future research should aim to investigate
the conditions under which chains are considered to be
transitive.

A further important direction for future research con-
cerns the relationships to different models of (causal)
learning. While our investigation of intransitive causal
chains was motivated by the postulated central role of
the Markov condition in causal Bayes nets (Cartwright,
2002, 2006; Hausman, & Woodward, 1999, 2004;
Spohn, 2001; cf. Mayrhofer & Waldmann, 2015;
Rehder & Burnett, 2005), an important question is to
what extent associative models of learning could ac-
count for our findings. Although associative and causal
learning differ with respect to important normative and
descriptive issues (Goedert, & Spellman, 2005;
Waldmann, 1996), there is also some overlap and con-
vergence between associative and probabilistic models

of contingency judgment (Chater, 2009; De Houwer &
Beckers, 2002; Mitchell, De Houwer, & Lovibond,
2009; Pineño & Miller, 2007). For instance, in line with
Marr’s (1982) distinction between computational and al-
gorithmic models, the Rescorla–Wagner model of asso-
ciative learning (Rescorla & Wagner, 1972) converges
under specific circumstances on the probabilistic con-
trast ΔP (Jenkins & Ward, 1965), a prominent measure
of statistical contingency or causal strength (Chapman &
Robbins, 1990; Chater, 2009; Cheng, 1997; Danks,
2003; Griffiths & Tenenbaum, 2005). Regarding our
transitive distortion effects, associative approaches that
model updating of associative strength in a pure
bottom-up fashion based on directly observable contin-
gencies between events cannot explain our results.
However, associative approaches that additionally model
Binferred^ associations may be able to account for our
results (e.g., Baetu & Baker, 2009). Future research on
transitive reasoning should aim to investigate the differ-
ent models and to characterize the relationships among
them.

Finally, an important question is whether inferential
distortion effects are restricted to causal chains. There is
some preliminary evidence that they do not generalize
to common-effect structures (A→B←C) with similar
positive local A→B and B←C contingencies and zero
contingencies between A and C (von Sydow et al.,
2010). This would be expected from a causal Bayes
net perspective. Another question concerns common-
cause structures, which play a central role in the philo-
sophical criticism of the Markov condition (Cartwright,
2007; Salmon, 1978; Sober, 1987; cf. Hausman &
Woodward, 1999, 2004). According to Bayes nets, caus-
al chains and common-cause structures are BMarkov
equivalent.^ This suggests identical inferential distortion
effects for both structures. Empirically, however, the ev-
idence on the direct psychological validity of the
Markov condition for common-cause structures is mixed
(Rehder & Burnett, 2005; see also Jarecki et al., 2013;
Mayrhofer, Goodman, Waldmann, & Tenenbaum, 2008;
Mayrhofer & Waldmann, 2015; Rottman & Hastie,
2013; von Sydow, 2011, 2013). Future research should
compare reasoning with different causal structures when
the data violate the Markov assumption (von Sydow
et al., 2010).

Relations to and differences from other research

Although our results are novel in the causal domain,
related findings in other fields point in a similar direc-
tion. For example, the Simpson paradox (Simpson,
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1951) describes how statistical dependencies can vanish
or even be reversed when moving from populations to
subpopulations. Some studies (Fiedler, Walther, Freytag,
& Nickel, 2003; Waldmann & Hagmayer, 2001) have
demonstrated participants’ problems in adequately con-
trolling for a third, confounding variable that reverses
the relation between two events. Whereas in our exper-
iments participants integrated individual causal links and
thereby misjudged the distal relation, participants in the
mentioned experiments integrated subpopulations, violat-
ing the relation among variables in the overall
population.

Other research has shown distortion of zero cue–outcome
contingencies, based on high or low base rates of an outcome
(Baker, Berbrier, & Vallée-Tourangeau, 1989, Experiment 3;
Dickinson, Shanks, & Evandon, 1994; also Buehner, Cheng,
& Clifford, 2003). Our results are neutral with regard to such
an Boutcome density bias,^ because we used no skewed out-
comes that is, P(A) = P(B) = P(C) = .5, and, empirically, we
did not find distortion effects in the zero-contingency control
conditions.

Furthermore, so-called pseudo-contingencies have
been discussed (Fiedler & Freytag, 2004; Fiedler,
Freytag, & Meiser, 2009; Fiedler, Kutzner, & Vogel,
2013; Meiser & Hewstone, 2004; cf. Kutzner, Vogel,
Freytag, & Fiedler, 2011), normally referring to illicit
inferences about relations between events based on
skewed marginal distributions. For instance, when many
students in one class watch a lot of television, and many
students in the same class show aggressive behavior, one
might infer that students who watch a lot of television
tend to be aggressive, even if the events are not corre-
lated. Such pseudo-contingencies, however, are unlikely
to apply in our scenarios, as our distributions (including
the ones with zero contingency) were not skewed.

Concluding remarks

Our results contribute to a view that emphasizes the role
of top-down or knowledge-based inference processes in
induction. It has been argued in different fields, such as
perception (Gregory, 1980), memory (Loftus &
Hoffman, 1989) , and language comprehension
(Graesser, Singer, & Trabasso, 1994), that top-down
processes favoring broadly coherent representations have
a substantial and occasionally distorting impact on in-
duction. Overall, our results corroborate the idea that
people derive probability estimates by combining single
causal links into complex causal models in a modular
way (Waldmann et al., 2008). The present results, how-
ever, suggest that people base their probability

judgments in causal structures not only on bottom-up
data—even if observations are directly available during
judgments—but also on transitive inferences based on
mental causal models that obey the Markov condition,
even if transitivity does not hold in the data.

Acknowledgments The work of M. v. S. and the running of the
experiments were supported by a grant from the Deutsche
Forschungsgemeinschaft (DFG Sy 111/2), as part of the priority
program BNew Frameworks of Rationality^ (SPP 1516). B. M.
was supported by grant ME 3717/2 from the same program.
Portions of Experiments 1a and 1b were presented at the 2009
Cognitive Science conference in Amsterdam (von Sydow, Meder,
& Hagmayer, 2009). We thank Alexander Wendt, Antonia
Lange, Alina Greis, Christin Corinth, and Martine Vardar for
assistance in data collection and Anita Todd and Martha Cun-
ningham for correcting the manuscript. We are grateful to Ben
Newell, Dennis Hebbelmann, Klaus Fiedler, Martha Cunning-
ham, Ralf Mayrhofer, and Michael R. Waldmann for helpful
comments on this research.

Appendix 1

Because Experiment 2 was run on a computer with a
smaller screen than the paper used in Experiment 1a
and 1b (with a DIN A4 page for each of the three
panels), we ran an additional item-sensitivity test in
Experiment 2 to control for each participant’s ability
to distinguish feature values of the microbes. The test
involved two counterbalancing conditions using different
items. For both conditions, participants compared six
pairs of microbes according to size (BIs Item 1 bigger
or smaller than Item 2?^) and six other pairs according
to grayscale. The comparisons each concerned five min-
imal (one-step) differences and one larger (four-step)
difference in the 8 × 8 stimulus space (cf. Fig. 7).

The results of the item-sensitivity test showed a rea-
sonable average error rate of 8%. There were no differ-
ences in error between size and grayscale (7% vs. 8%),
and only small differences between clearly distinguish-
able (four-step) and hard-to-distinguish (one-step) items
(5% vs. 8%). Thus, only a small proportion of errors
can plausibly be attributed to an inability to distinguish
similar items rather than to general noise. Additionally,
the error rate in the item-sensitivity task did not corre-
late with the number of errors in the local judgments,
r(121) = .07, or with the proportion of answers in line
with our predictions, r(121) = .09. Participants’ individ-
ual ability to differentiate between items does not seem
to have mediated the distortion effects we found.
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